skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guragain, Sudhina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Several approaches have been made to synthesize inorganic hollow nanospheres. A dual-template system is the most effective method, usually using surfactants to form mesoporous shells and rigid templates to form interior hollow structures. However, the removal of rigid templates is time consuming and uneconomical. The self-assembly of soft-templates is more convenient and is able to directly construct hollow mesoporous nanoparticles. The soft-templating approach especially the micelles of amphiphilic block copolymers are very helpfulfor creating hollow interiors andporous shell. The hollow void and thickness of shell can be easily tuned by changing either molecular weight of polymer or solution properties. This review focuses on the synthesis of inorganic hollow nanospheres and their application in drug delivery. The large hollow void space with thorough porosity are always beneficial for drug loading and release. 
    more » « less